Two kinds of count Ns

- Quantized Count Ns: lexically determine their CRITERION of INDIVIDUATION at all contexts (lexically fix what is one in their denotation for all contexts) - cat, lentil
- Non-quantized Count Ns: lexically do not uniquely determine their CRITERION of INDIVIDUATION (what is one in their denotation varies with context) - fence, teacup

Key evidence:

- fence-like count Ns, like just mass Ns, occur in measure (pseudo-particle) DPs: three pounds of cat, three yards of fence, three inches of snow

Null Counting Context

This makes

(a) 3 km of fence, 100 yards of hedge

Lexical Mass Ns

Measure Phrases, occur in measure (pseudo-particle) DPs. In contextually determined disjoint individuation schemas.

- This makes
 - The set of single cats is the same disjoint set at all counting contexts, hence also disjoint

Landman (2011)

Problem:

(i) direct modification by numerical expressions;
(ii) pluralization: three cats, three fences;
(iii) arguments of quantifiers that select for count Ps: cat, lentil

How many fences are there in the picture?

- In context K:
 - ([(k, ki); (h, hi); (c, ci)]) k >4 (four fences)

- In context H:
 - ([(h, hi); (l, li); (d, di)]) i > 1 (one fence)

- Counting is counting-context-context pairs

Problem

Assimilating the account of count Ns like cat under-count-sensitive count Ns like fence raises the question why we have only one licensed individuation schema for cat, but multiple ones for fence?

Landman (2011)

- For object mass nouns (Landman’s neat mass Ns), generator sets = entities that count as one: e.g.,
- Generators = objects, parts of fences at other specific counting contexts

Landman’s Neat Mass Ns

- Overlapping entities count as one

EMPIRICAL EVIDENCE

Prototypical count Ns like cat and fence-like Ns

- **Similarities**
 - (i) direct modification by numerical expressions;
 - (ii) pluralization: three cats, three fences;
 - (iii) arguments of quantifiers that select for count Ps: each boy, each fence;

- **Differences**
 - Measure (aka pseudo-particle) DPs with extensive measure functions admit fence-like Ns, which denote -QUA(P), but not prototypical count Ns, which denote QUA(P);
 - (a) 6 kilograms of baby
 - (b) You can find a heavy piece of baby in the nursery.
 - (c) 3 km of fence, 100 yards of hedge
 - (b) On the other side of town, we saw several pieces of wall.
 - (c) You can find a great many lengths/stretches of dry stone wall across NE England.

Puzzle for a uniform semantic analysis of count Ns (Roithstein, 2010, and also Krifka 1989)

- Why are count nouns like fence felicitous in measure (pseudo-particle) DPs when they pattern, grammatically, with count nouns like cat in other contexts?

BACKGROUND

Krifka (1989)

- Two Mereologically-based Predicate Types
 - CUMULATIVE: \(v^n(CUM(P), P) \rightarrow v^n(P, P) \land \Pi \rightarrow P(Y) \rightarrow \pi(Y) \) water, apples
 - QUANTIZED: \(v^n(QUA(P), P) \rightarrow v^n(Y)(P / x) Y \rightarrow (x \subseteq P) \) (an) apple, two liters of water

From Krifka (2007)

Lexical Mass Ns

- Denote CUMULATIVE sets, only specify a quantitative criterion of application: \(x \in [\text{water}] \)

Null Count Ns

- Denote QUANTIZED sets, specify a qualitative and a quantitative criterion of application: \(x \in [\text{apple, (an) apple}] \), \(x \in [\text{water, (two liters of water)}] \)

Extensive Measure Function \(P \) (e.g. LITER, KILO) is a function relative to a sum operation \(\Pi \) on a part structure \(P \), if it maps structures to positive real numbers such that:

\[
\Pi(P) = \text{additive}.
\]

Quantizing Modification:

\[
v^n(QUA(P), P) \rightarrow v^n(QUA(P), \Pi(P)) \text{ two liters of } (df), \text{ four kilos of } (df) \text{ require a } QUA(P) \text{ and derive a } QUA(P); (an) apple, two liters of water
\]

Problem

- Quantization not necessary for Ns to be grammatically count (Krifka 1989:87, Parce, p.c.)
- fence-like count Ns: sequence, line, wall, band, bouquet, plane, hedge...

Roithstein (2010)

- Lexical Mass Ns of type \((x,t)\)
- Lexical Count Ns of type \((x \times t, 1)\)

Problem

- The set of single cats is the same disjoint set at all counting contexts, hence also disjoint at the null counting context

Landman’s Neat Count Ns

- For object mass nouns (Landman’s neat mass Ns), generator sets = entities that count as one: e.g.,

Landman’s Neat Count Ns

- Overlapping entities count as one

SIMULTANEOUSLY IN THE SAME CONTEXT

- Different maximally disjoint subsets (Landman’s VARIANTS) yield different cardinalities

\[\Rightarrow \text{ COUNTING GOES WRONG}\]

ANALYSIS

Basic Assumptions

- Measure Phrases formed with extensive measure functions that are applied to -QUA(P),
- see above Quantizing Modification (Krifka 1989)
- Measure functions only exclude singular QUA(P’s) (also Schwarzschild 2002), pace claims in recent unpublished work of Roithstein and Landman that measure functions require ‘messy’ mass P’s as arguments.

Null Counting Context

- \(X/P, X/P \text{ for } X/P \text{ of all } P \text{ individuals at counting context } c \)
- COUNT Ns are derived from the disjointness of the IND-set at \(c \), rather than being a purely type-based distinction, as in Roithstein (2010).

Count Ns

- Count Ns have a counting context argument \(c >1 \), meaning that their denotations are evaluated relative to a counting context of utterance that uniquely determines what is ‘one’, cat: \(c >1 \text{ (CAT)} \text{ , IND-CAT } c_{1+c} \)
- The IND-set for CAT is disjoint (and quantized) at every specific counting context \(c_{1+c} \)
- COUNT NPs are not quantized. DPs at specific counting contexts are proper
 - Hence both parts and sums are count noun at the null counting context

Landman’s Neat Count Ns

- Makes measure grammatically mass, and felicitous in a measure phrase

Measure Phrases

- Apply extensive measure function to the counting base of the argument predicate

- Also saturate the base with the null counting context

Landman’s Neat Count Ns

- A function from a numeral to a function on an N predicate to a predicate for a measure DP.

- Interpretable only if the counting base of the resulting expression is not quantized

Landman’s Neat Count Ns

- IN-\(D \text{CAT}(c) \) is quantized, but IN-D\(E \text{CAT}(c) \) and WATER\((c) \) are not quantized

Why do we find NL predicates that are -QUA(P), and also -QUA(P)?

- Because they admit a multiplicity of contextually determined disjoint individuation schemas.

CONSEQUENCES

- An explanation for the admissibility of count Ps as arguments of measure phrases.

Selected References