Why Crystal Barrels are Faster than Whiskey Spoons
A Frame-Theoretic Remark to Psycholinguistic Studies of Compounding

Daniel Schulzek, Carina Fueller & Peter Indefrey
Institute for General Linguistics
Heinrich-Heine University Duesseldorf

Compounding in the CRC 991

• Cooperation of
 – C05 "Frames and Nominal Word Formation" (Pi: Sebastian Lübner)
 – A04 "Accessing Conceptual Information in Language Production and Comprehension" (Pi: Peter Indefrey)

Outline

1 Compounding in German
2 Psycholinguistic Paradigms in Research on Compounding
3 Modeling Compound Interpretations in Barsalou Frames
4 Empirical Data
5 Relation Priming in Frames

1 COMPOUNDING IN GERMAN
Terminology

Compounding: process of juxtaposing two or more radical elements

Holztisch
- translation: Holz 'wood', Tisch 'table'

Compound: result of such a process

Holztisch

endocentric N-N compounds: the second noun(head) is determined by the first one (modifier)

\[\text{_{is made of _}} \]

Relation: linking element between the concepts of modifier and head

Compositionality

- ambiguity of compounds >> interpretation results in a reading

Example: Metallsäge, Metall 'metal', Säge 'saw'

 reading 1: "saw made of metal"
 reading 2: "saw for cutting metal"
 reading 3: "saw that is stored in a box made of metal"

DEFINITION: The reading of a compound is **compositional** if it can be expressed in terms of the compound constituents. Otherwise the reading is called **opaque**.

Example for an opaque meaning: Augenblick, Auge 'eye', Blick 'look'
 reading: "instant"

- focusing on relations in compositional readings

Relation-set approach

Assumptions:
- relations are deduced from existing compounds and stored in the lexicon
- interpreting compounds: choosing the most plausible relation

Holztisch
Relation priming

- Gagné (2002): Relations can be primed by the modifier

<table>
<thead>
<tr>
<th>pairs of compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>semantically similar modifiers</td>
</tr>
</tbody>
</table>
| different modifiers/
different relations |
| same relation: steal spoon metal door |
| different relation: steal spoon metal saw |
| metal door fleece curtain |

However: no priming effect by the head noun

Schema approach

Assumptions:
- activation of schemata by modifier and head
- Interpreting compounds as a special case of concept matching by slot filling

- Subjects can create more than 20 interpretations on the fly

Comparing the Paradigms

Relation-set approach:
- motivates why relations can be primed by the modifier
- is not able to explain how initial relations arise

Schema approach:
- explains how initial or new relations arise
- nearly no experimental support

➤ We need a model which
 - explains how initial relations arise,
 - accounts for why relations can be primed by the modifier,
 - is empirically supported.

3 EXPLAINING COMPOUNDING IN BARSALOU FRAMES
Barsalou Frames

Mathematical modeling of frames
- frames are represented as directed graphs, where
 - arcs correspond to attributes
 - nodes correspond to values
- attributes
 - functions mapping values on values
- values
 - instantiation of types
 - ordered in a type hierarchy of specification

(cf. Petersen 2007)

Example:
- Liz
- car
diesel automatic
- color
- 4-cylinder

Compound Interpretation in Frames

Thesis:
- Interpretations of compounds correspond to operations on frames.
- These operations result in specific readings.

Example: Holztisch, Holz ‘wood’ Tisch ‘table’
reading: “table made of wood”

Example: Ketchupflasche, Ketchup ‘ketchup’ Flasche ‘bottle’
reading: “bottle that contains ketchup”

Example: Suppenlöffel, Suppe ‘soup’ Löffel ‘spoon’
reading: “spoon for eating soup”

Compounding and Conceptual Distance

Thesis:
- Interpretations differ in complexity.
- Complexity can be measured in the length of paths in frame graphs.

Type 1: Attribute compounds
- modifier frame is directly linked to the head frame

Example: Holztisch, Holz ‘wood’ Tisch ‘table’
reading: “table made of wood”

Example: Suppenlöffel, Suppe ‘soup’ Löffel ‘spoon’
reading: “spoon for eating soup”

Type 2: Frame compounds
- frames of modifier and head are linked by an implicitly given action frame

Example: Suppenlöffel, Suppe ‘soup’ Löffel ‘spoon’
reading: “spoon for eating soup”

Research question: How can we get empirical support for our frame analysis?
4 EMPIRICAL DATA

Stimuli

Condition I frequently occurring compounds (German compounds with > 130.000 hits on Google)

<table>
<thead>
<tr>
<th>Experimental Condition</th>
<th>Control Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a1) Frame compounds</td>
<td>(b1) Attribute compounds</td>
</tr>
<tr>
<td>für 'for'</td>
<td>aus 'made of'</td>
</tr>
</tbody>
</table>

- **Type 1: Attribute compounds**
 - Material _object_
 - Theme _instrument_

- **Type 2: Frame compounds**
 - Material _object_
 - Theme _instrument_

- Thesis: The higher the conceptual distance the higher the cognitive effort.
- Aim: measure interpretational processes
 - We have to make sure that the investigated compounds are not lexicalized.
- Hypothesis: The interpretation of frame compounds should take longer than that of occasional attribute compounds.

Stimuli

Condition II occasional compounds (German compounds with < 55 hits on Google)

<table>
<thead>
<tr>
<th>Experimental Condition</th>
<th>Control Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a1) Frame compounds</td>
<td>(b1) Attribute compounds</td>
</tr>
<tr>
<td>für 'for'</td>
<td>aus 'made of'</td>
</tr>
</tbody>
</table>

- **Type 1: Attribute compounds**
 - Soft _object_
 - Soft _instrument_

- **Type 2: Frame compounds**
 - Soft _object_
 - Soft _instrument_

- Thesis: The higher the conceptual distance the higher the cognitive effort.
- Aim: measure interpretational processes
 - We have to make sure that the investigated compounds are not lexicalized.
- Hypothesis: The interpretation of frame compounds should take longer than that of occasional attribute compounds.
What did we expect?

<table>
<thead>
<tr>
<th>Experimental Condition</th>
<th>Control Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a1) Frame compounds</td>
<td></td>
</tr>
<tr>
<td>Suppenlöffel</td>
<td></td>
</tr>
<tr>
<td>Suppe 'soup', Löffel 'spoon'</td>
<td></td>
</tr>
<tr>
<td>(b1) Attribute compounds</td>
<td></td>
</tr>
<tr>
<td>Salatschüssel</td>
<td></td>
</tr>
<tr>
<td>Salat 'salad' Schüssel 'bowl'</td>
<td></td>
</tr>
<tr>
<td>(a2) Attribute compounds</td>
<td></td>
</tr>
<tr>
<td>Material - Instrument</td>
<td></td>
</tr>
<tr>
<td>Kristalllöffel</td>
<td></td>
</tr>
<tr>
<td>Kristall 'crystal' Löffel 'spoon'</td>
<td></td>
</tr>
<tr>
<td>(b2) Attribute compounds</td>
<td></td>
</tr>
<tr>
<td>Glaseschüssel</td>
<td></td>
</tr>
<tr>
<td>Glas 'glass' Schüssel 'bowl'</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experimental Condition</th>
<th>Control Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a1) Frame compounds</td>
<td></td>
</tr>
<tr>
<td>Suppenlöffel</td>
<td></td>
</tr>
<tr>
<td>Suppe 'soup', Löffel 'spoon'</td>
<td></td>
</tr>
<tr>
<td>(b1) Attribute compounds</td>
<td></td>
</tr>
<tr>
<td>Salatschüssel</td>
<td></td>
</tr>
<tr>
<td>Salat 'salad' Schüssel 'bowl'</td>
<td></td>
</tr>
<tr>
<td>(a2) Attribute compounds</td>
<td></td>
</tr>
<tr>
<td>Material - Instrument</td>
<td></td>
</tr>
<tr>
<td>Kristalllöffel</td>
<td></td>
</tr>
<tr>
<td>Kristall 'crystal' Löffel 'spoon'</td>
<td></td>
</tr>
<tr>
<td>(b2) Attribute compounds</td>
<td></td>
</tr>
<tr>
<td>Titanschüssel</td>
<td></td>
</tr>
<tr>
<td>Titan 'titanium' Schüssel 'bowl'</td>
<td></td>
</tr>
</tbody>
</table>

Method & Procedure

Pretest: Plausibility rating of the Paraphrases by 80 students with German as their only native language

Subjects: 30 right-handed native speakers of German

Design: online, within-subjects

Procedure: forced choice paradigm

- visual presentation of the compounds on a computer screen in a sound attenuated booth at the reaction time lab of the HHU
- pseudo-randomized order of the stimuli to avoid relation-priming effects as shown by Gagné (2002)

Did our Subjects choose the expected Paraphrase?

- Subjects chose significantly more often the expected paraphrase (p < .01)
- The distribution of unexpected paraphrases did not differ for the four categories
Results

- Significantly higher reaction times for the occasional compound condition (surprise 😃)
- Unequal behaviour of the different categories in the frequent and the occasional compound condition suggest different processing strategies

Explanation: Frequency Effect

A look into the Leipzig Corpora Collection (LCC) reveals, that compounds of this type are considerably less frequent in German
A closer look at the two types of compounds reveals that we most likely modelled a different reading than is normally preferred unfortunately both readings can be expressed by the paraphrase für 'for’

Explanation: A Categorical Error

Categorical Error

- Error in defining the preferable reading
 - reading 1: “container that contains sth.”
 - reading 2: “container that is made for filling it with sth.”

Example: Saftschüssel, Saft ‘juice’ Schüssel ‘bowl’
 - reading 1: “bowl that contains juice”
 - reading 2: “bowl that is made for filling it with juice”

Analogy Interpretations in Frames

- Question: How is it possible that relations can be primed (as Gagné 2002 demonstrated)?
- Solution builds on type hierarchies of values
 - Example: Holztisch, Holz ‘wood’ Tisch ‘table’
 - material
 - object
 - Stahl
 - Für
 - Example: Stahltür, Stahl ‘steal’ Tür ‘door’
 - material
 - object
 - Stahl
 - Für

5 RELATION PRIMING IN FRAMES
Summary & Outlook

• Barsalou frames offer a tool to make predictions about the complexity of interpretational processes.
• Frame compounds may reflect greater conceptual distance and therefore greater cognitive effort which result in higher reaction times.
• Frames give rise to a schema approach on compounding in which the phenomenon of relation-priming can be explained.
• Open question: Are the compounds of the type content__container frame compounds?

References

