Definites in the Theory of Concept Types and Determination

Sebastian Löbner

Heinrich Heine University Düsseldorf,
Coordinated Research Centre 991
“The Structure of Representations in Language, Cognition and Science”

www.sfb991.uni-duesseldorf.de/en/sfb991/

Semantic and typological perspectives on definites
Düsseldorf, 01-02 June, 2012
1. Observations about definite descriptions

2. Concept types and determination
 (In)definite determinations, (in)congruent uses

3. Uses of Definites
 Uses in the light of CTD, type e, semantic vs. pragmatic uses

4. The scale of Definiteness
 implicational scale in terms of uses

5. Types of Evidence
 Statistical, topological, historical, psycholinguistic, linguistic theories
1. Observations about definite descriptions

For languages with definiteness marking:

- There are certain conceptual types of nouns for which the definite article is — almost — obligatory.

- Certain types of definite NPs are usually not marked with a definite article, in particular, proper names and personal pronouns.

- There are splits of definiteness marking in almost all languages.

- In most cases, definite articles developed from demonstratives.

- Semantic theory is preoccupied with anaphoric uses of definites.
2. Concept types and determination

<table>
<thead>
<tr>
<th>[−U]</th>
<th>[+U] conceptually unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>sortal nouns</td>
<td></td>
</tr>
<tr>
<td>describe their potential referents in terms of its properties</td>
<td>individual concepts</td>
</tr>
<tr>
<td>girl book water</td>
<td>describe their potential referents in terms of a functional relation to the situation</td>
</tr>
<tr>
<td>▶ unary predicate</td>
<td>pope Jim she</td>
</tr>
<tr>
<td>▶ open number of referents</td>
<td>▶ description of an individual</td>
</tr>
<tr>
<td></td>
<td>▶ 1 referent</td>
</tr>
</tbody>
</table>

| **relational concepts** |
describe their potential referents in terms of a relation to a „possessor“	**functional concepts**
uncle *part* *kin*	describe their potential referents in terms of a functional relation to a „possessor“
▶ binary predicate	*mother* *mouth* *amount*
▶ open number of referents	▶ unary function concept
	▶ 1 referent per possessor

[−R] conceptually relational

[+R] conceptually relational
Noun types and unmarked determination

<table>
<thead>
<tr>
<th>[-U]</th>
<th>[+U] conceptually unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>sortal nouns
girl book water
✓ indefinite
✓ absolute
logical type: <e,t></td>
<td>individual nouns
pope Jo she
✓ definite
✓ absolute
logical type: <e></td>
</tr>
<tr>
<td>relational nouns
uncle part kin
✓ indefinite
✓ possessive
logical type: <e,e,t></td>
<td>functional nouns
mother mouth amount
✓ definite
✓ possessive
logical type: <e,e></td>
</tr>
</tbody>
</table>

[–U] [+R] conceptually relational
Noun types and determination: definite and possessive

<table>
<thead>
<tr>
<th>$[-U]$</th>
<th>$[+U]$ conceptually unique</th>
</tr>
</thead>
</table>
| **sortal nouns**
girl, book, water
- definite
- possessive
logical type: $<e,t>$ | **individual nouns**
pope, Jo, she
- definite
- possessive
logical type: $<e>$ |

<table>
<thead>
<tr>
<th>$[+R]$</th>
<th>$[-R]$ conceptually relational</th>
</tr>
</thead>
</table>
| **relational nouns**
uncle, part, kin
- definite
- possessive
logical type: $<e,<e,t>$ | **functional nouns**
mother, mouth, amount
- definite
- possessive
logical type: $<e,e>$ |
Why noun type and mode of determination interact

1. The basic idea
 Determination in terms of definiteness and relationality fixes the conceptual type of the NP token in its given context.

 - The distinction of conceptual types carries through all stages of formation and interpretation of nominals, from the lexical meaning to the NP token.
 - Definite determination means: “Construe the NP token as a conceptually unique description, i.e. as [+U]!”.
 - Indefinite determination means: “Construe the NP token as a sortal description, i.e. as [–U]!”.
 - Absolute determination means: “Construe the NP token as a non-relational description, i.e. as [–R]!”.
 - Relative determination means: “Construe the NP token as a relational description, i.e. as [+R]!”.
The type effect of simple modes of determination

<table>
<thead>
<tr>
<th>mode of determination</th>
<th>resulting NP/DP type</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple indefinite</td>
<td>[−U]</td>
</tr>
<tr>
<td>(indefinite article, bare plural or mass noun)</td>
<td></td>
</tr>
<tr>
<td>simple definite</td>
<td>[+U]</td>
</tr>
<tr>
<td>simple relational</td>
<td>[+R]</td>
</tr>
<tr>
<td>(without possessor specification)</td>
<td></td>
</tr>
<tr>
<td>simple absolute</td>
<td>[−R]</td>
</tr>
</tbody>
</table>
Further modes of determination

Certain modes of determination require a CNP input of a certain type and deliver an NP of a different type:

<table>
<thead>
<tr>
<th>mode of determination</th>
<th>input CNP type</th>
<th>output NP type</th>
</tr>
</thead>
<tbody>
<tr>
<td>demonstrative</td>
<td>[–U]</td>
<td>[+U]</td>
</tr>
<tr>
<td>possessive determiner, derelativizer</td>
<td>[+R]</td>
<td>[–R]</td>
</tr>
<tr>
<td>possessive determiner +</td>
<td>[+R]</td>
<td>[–R][+U]</td>
</tr>
<tr>
<td>+ for argument NPs in languages where possessive determiners bar definite determination (e.g. German, English, but not Italian).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relativizer</td>
<td>[–R]</td>
<td>[+R]</td>
</tr>
</tbody>
</table>
CNP types and modes of determination

CNP = common noun phrase = operand of determination

- In principle, every mode of determination can be applied to every conceptual type of CNP. (The application may require grammatical adaptation, e.g. (de)relativizing.)

- The determination of an NP token is **congruent**, iff the conceptual type of the CNP matches the input requirement of the determination, if there is any, or else matches the conceptual type resulting from the determination.

 Otherwise, the determination of an NP token is **incongruent**.

- **Incongruent determination coerces conceptual type shifts.**
CNP types and congruent modes of determination

<table>
<thead>
<tr>
<th>CNP type</th>
<th>congruent determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>sortal</td>
<td>indefinite absolute</td>
</tr>
<tr>
<td>individual</td>
<td>definite absolute</td>
</tr>
<tr>
<td>relational</td>
<td>indefinite possessive</td>
</tr>
<tr>
<td>functional</td>
<td>definite possessive</td>
</tr>
</tbody>
</table>
CNP types and modes of determination coercing type shifts

<table>
<thead>
<tr>
<th>CNP type</th>
<th>incongruent determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>sortal</td>
<td>definite</td>
</tr>
<tr>
<td>individual</td>
<td>indefinite</td>
</tr>
<tr>
<td>relational</td>
<td>definite</td>
</tr>
<tr>
<td>functional</td>
<td>indefinite</td>
</tr>
</tbody>
</table>

- definite possessive
- indefinite possessive
- definite absolute
- indefinite absolute
1. Observations
2. Concept types
3. Uses
4. The scale
5. Evidence

The [–U] group of determinations (congruent with [–U] CNPs)

• singular count
 - indefinite article \(a(n)\)
 - singular count quantifiers each, every

• plural, mass
 - bare plural, bare mass
 - plural, mass with quantity specification: numerals, many-much etc.
 - definite plural, mass (!)
 - plural and mass quantifiers all, both

• neutral
 - unspecified indefinite some
 - free choice indefinite any
 - negative no
 - interrogative indefinite which
 - demonstrative (!)
The [+U] group of determinations (congruent with [+U] CNPs)

- definite article the

The [+R] group of determinations (congruent with [+R] CNPs)

- right possessive _____ of NP
- left possessive NP’s _____
- possessive determiners my, your, ...

The [–R] group of determinations (congruent with [–R] CNPs)

- Complete (maximal) argument NPs are [–R].
The distinction of concept type applies at every nominal level.

- **Nouns**
 The conceptual type of a noun, proper name, or pronoun is **lexically fixed**
 (modulo polysemy): The meaning of a sortal / relational / individual / functional
 [pro]noun is a concept of the respective type.

- **CNPs**
 When a CNP (common noun phrase = operand of determination) is formed,
 the noun may undergo a **shift of concept type**,
 - (overtly) by combination with modifiers
 - (overtly) by combination with argument specifications
 - (covertly) by application of a general meaning shift (e.g. metonymy)
 - (covertly) by adding contextual information

- **NPs** (the result of applying determination to a CNP)
 Simple determination (= definite / indefinite / possessive / absolute without further
 semantic content) **fixes the conceptual type of the NP token**. Determination
 may coerce a type shift of the CNP.
Levels of type shifts

Level 0
a. choice of lexical meaning variant
b. compositional modification: attributes, complements, adjuncts

lexical semantics
compositional semantics

Level 1
general conceptual shifts
applying across types of meanings (such as „artefact“, „institution“, „profession“, „attribute“, „property“)
dynamic lexicon

Level 2
enriching the concept for the referent of an NP by adding extralinguistic information
pragmatic enrichment
3. Uses of definites

3.1 Congruent definite determination: with individual and functional CNPs.
If the CNP is [+U], definite determination is semantically predictable / void
for most argument NPs (i.e. those for which the predication entails existence).

individual concepts
With proper names and personal pronouns, definite determination is congruent,
though implicit.
With individual concept nouns, definite determination is (mostly) explicit.
(1) The pope / ©A pope will visit Switzerland in 2016.
(2) By 2030, the catholic church will have a different pope / *the different pope.

functional concepts
(3) The mother / ©A mother of Jimmy consulted the teacher.
(4) Every person has a mother / §the mother.
(5) Definite associative anaphora (DAA)
I’ve bought a car, but something’s wrong with the clutch [= of the car].
3. Uses of definites

3.1 Congruent definite determination: individual and functional CNPs

If the CNP is [+U], definite determination is semantically redundant.

- shifted CNPs = lexically [–U] sortal or relational noun
 - plus a modifier that turns a [–U] concept into a [+U] concept, such as
 - only (adnominal)
 - superlatives, last, next, favourite (Partee & Borschev), ordinals
 - [+U] appositions
 - number 2, word ‘kinezumi’, rumour that …
 - autophoric DDs: SC with “establishing clause”
 - computer I use in my office

- artefacts-in-exclusive-use-possessives
 - my / the toothbrush, computer, car, bed, flat, …
3.2 Incongruent definite determination: with sortal and relational CNPs. If the CNP is [–U], definite determination is semantically functional; it inevitably involves a type shift [–U] → [+U] (or: <e,t> → e).

- **deictic** use: The deictic gesture maps the sort described by the [–U] CNP to an individual of the sort. Note that “what S points to” is a functional concept (here enriched with sortal information on the value). In many cases, a deictic gesture is not necessary.

(5) *I hope the beamer will not break down during my talk.*

(6) *Would you pass me the salt, please?*
• anaphoric use: The definite determination requires the construal of the CNP concept as an individual concept. This is achieved by combining the sortal content of the CNP concept with a functional link from the situation to the referent. The functional link is retrieved from the information provided by the sentential context of the anaphora and the contextual information about the referent of the antecedent.

(6) Reinhold met a yeti. He took a picture of the snowman.

construed individual concept:

“x such that:

x is a snowman, x is such that a picture can be taken of x,
(= anaphor sentential cotext)

and Reinhold met x; x is a yeti”
(= antecedent contextual information)

⇒ a conceptually unique description, given that context
4. The scale of uniqueness / definiteness

PD pragmatic definites (achieved by level-2 shifts)

deictic definites
 < anaphoric definites
 < SC with establishing relative clause (autophoric definites)

 ≤ definite associative anaphors (DAA)

 ≤ **SD semantic definites**

 < lexical IC, enriched IC (SC with superlative, ordinal etc.)
 < proper names
 < 3rd person pronouns
 < 2nd, 1st person pronouns
4. The scale of uniqueness / definiteness

Types of definite NPs

- deictic
- anaph.
- autoph.
- DAA
- IC
- proper n.
- 3rd
- 2nd, 1st

Pragmatic definiteness: semantic definiteness

Grammatical distinctions

- adnominal demonstratives
- general nouns
- names
- pronouns
- 3rd
- 2nd, 1st
5. Evidence (1) – typological

- Incongruent determination receives more salient marking.
 - Incongruent uses are marked, while congruent uses are not.
 - Congruent uses receive reduced marking as opposed to incongruent uses.
 - Definiteness splits:
 > Existence of definiteness marking entails marking of pragmatic definiteness.
 > Certain types of semantically definites NPs are left unmarked.

> Talk by Ortmann (today, 10:15)
Evidence (2) – historical

Definite articles are expected to be grammaticalized from determiners that yield the NP concept type [+U].

Source 1:
demonstrative determiners \([-U] \rightarrow [+U]\)
- deictic distinctions are dropped (cf. anaphora)
- later, input restriction to \([-U]\) is dropped: marking extends to semantic definites

Source 2:
Possessive determination with pronominal possessor \([+R] \rightarrow [-R][+U]\)
- relation to possessor is restricted and generalized
- relation to possessor is dropped

> Talk by Gerland (tomorrow, 15:35)
Evidence (3) – psycholinguistic

- Incongruent determination requires more processing time, due to the type shift involved.

> Talk by Brenner (today, 16:45)
Evidence (4) – statistical

- Incongruent uses of definite and indefinite determination are less frequent than congruent uses: lexical entries are arranged as to avoid type shifting.

<table>
<thead>
<tr>
<th>Concept Type</th>
<th>[-U]</th>
<th>[+U]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sortal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>individual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>individ.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>functional</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From: Horn & Kimm (to appear)

> Talk by Horn & Kimm (today, 16:00)
Evidence (5) – from linguistic theory

Linguistic description and theory is preoccupied with pragmatic definites

Most theories of definiteness focus on pragmatic definites because …

… only with pragmatic definites, marking of definites is semantically nonredundant;

… sortal nouns outnumber all other types of nouns within the class of general nouns which typically are combined with determiners. With sortal nouns, definiteness is pragmatic;

… linguistic research has a strong bias towards written data where, with sortal nouns, anaphoric uses prevail;

… in the European languages in the focus of linguistic research, definite articles developed from demonstratives that were originally restricted to pragmatic definiteness. Only gradually, their use was extended to semantically definite [+U] nominals, which still are only incompletely explicitly marked (witness bare definites). Many linguistic theories seem to follow this course of development by extending theories of anaphoric definites to definites in general (Behaghel 1923, Christophersen 1939, Heim 1982, Kamp 1981, Hawkins 1987, etc.).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>