Definiten esssplits

Sebastian Löbner

Heinrich Heine University Düsseldorf, Coordinated Research Centre 991 “The Structure of Representations in Language, Cognition and Science”

www.sfb991.uni-duesseldorf.de/en/sfb991/

„Languages with and without articles”
UMR 7023 CNRS / Paris 8
1. Observations about definite descriptions

2. Concept Types and (In)Definite Determination
 Concept types, (In)definite determinations, (In)congruent uses

3. Uses of Definites
 Uses in the light of CTD, type e, semantic vs. pragmatic uses

4. Splits: Cross-linguistic data
 Types of splits

5. Scale of definiteness
 Implicational scale in terms of uses
1. Observations about definite descriptions

For languages with definiteness marking:

- There are certain conceptual types of nouns for which the definite article is — almost — obligatory.

- Certain types of definite NPs are usually not marked with a definite article, e.g. proper names and personal pronouns.

- There are splits of definiteness marking in almost all languages.

- In most cases, definite articles developed from demonstratives.

- *Semantic theory is preoccupied with anaphoric uses of definites.*
2. Concept types

[☞ stands for: “in need of support by special context”]

individual concepts
(1) The/©A pope will visit Switzerland in 2016.
(2) By 2030, the catholic church will have a/*the different pope.

sortal concepts
(3) A/©The cat killed a/©the mouse.
(4) © Our cat caught a mouse yesterday. She killed the/©a mouse.

functional concepts
(5) The/©A mother of Jeanne consulted the teacher.
(6) Every person has a/*the mother.
2. Concept types

<table>
<thead>
<tr>
<th>[-U]</th>
<th>[+U] conceptually unique</th>
</tr>
</thead>
</table>
| **sortal nouns**
 girl *book* *water*
 © definite
 © possessiv
 logical type: \(<e,t>\) |
| **individual nouns**
 pope; *Jeanne*; *she* |
 ✓ definit
 © possessiv |
 logical type: \(<e>\) |

<table>
<thead>
<tr>
<th>[-R]</th>
<th>[+R] conceptually relational</th>
</tr>
</thead>
</table>
| **relational nouns**
 daughter *part* *kin*
 © definit |
 ✓ possessiv |
 logical type: \(<e,<e,t>>\) |
| **functional nouns**
 mother *mouth* *amount* |
 ✓ definit |
 ✓ possessiv |
 logical type: \(<e,e>\) |
<table>
<thead>
<tr>
<th>[-U]</th>
<th>[+U] conceptually unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>sortal concepts describe the potential referents in terms of its properties</td>
<td>individual concepts describe the potential referents in terms of a functional relation to the situation</td>
</tr>
<tr>
<td>▶ unary predicate</td>
<td>▶ description of an individual</td>
</tr>
<tr>
<td>▶ open number of referents</td>
<td>▶ 1 referent</td>
</tr>
<tr>
<td>[–R] conceptually relational</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[-U]</th>
<th>[+U] conceptually unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>relational concepts describe the potential referent in terms of a relation to a „possessor“</td>
<td>functional concepts describe the potential referent in terms of a functional relation to a „possessor“</td>
</tr>
<tr>
<td>▶ binary predicate</td>
<td>▶ unary function concept</td>
</tr>
<tr>
<td>▶ open number of referents</td>
<td>▶ 1 referent per possessor</td>
</tr>
<tr>
<td>[–R] conceptually relational</td>
<td>[–R] conceptually relational</td>
</tr>
</tbody>
</table>
Concept types and determination

- The conceptual type of a noun or pronoun is **lexically fixed** (modulo polysemy): The meaning of a sortal/relational/individual/functional [pro]noun is a concept of the respective type.

- When a CNP (common noun phrase = operand of determination) is formed, the noun may undergo **conceptual shifts**,
 - (overtly) by combination with modifiers
 - (overtly) by combination with argument specifications
 - (covertly) by application of a general meaning shift (e.g. metonymy)
 - (covertly) by adding contextual information

- Simple determination (= definite / indefinite / possessive / absolute without further semantic content) **fixes the conceptual type of the NP token**. Determination may coerce a type shift of the CNP.

Definite determination

- Definite determination means: “Construe the NP token as a conceptually unique description, i.e. as [+U]!”.

- The meaning/function of definite determination is the same for singular, plural, and mass CNPs

Indefinite determination

- Indefinite determination means: “Construe the NP token as a sortal description, i.e. as [–U]!”.

- The meaning/function of indefinite determination is the same for singular, plural, and mass CNPs
1. Observations
2. Concept types
3. Uses
4. The scale
5. Splits

Congruency and type shifts

- If the CNP is not semantically [+U],
 definite determination coerces a type shift [−U] → [+U]

 > *In particular, definite determination coerces a type shift on sortal nouns: anaphoric and deictic DDs*

- If the CNP is not of semantically [−U],
 indefinite determination coerces a type shift [+U] → [−U]

 > *Indefinite uses of individual or functional concepts*

- Determination is (in)congruent \(\iff_{\text{def}} \) the CNP is (not) of the resulting type.

- A DD is **semantically definite** \(\iff_{\text{def}} \) the CNP is [+U].
 A DD is **pragmatically definite** \(\iff_{\text{def}} \) the CNP is [−U].
 Levels of type shifts

Level 0 a. choice of lexical meaning variant core semantics
 b. compositional modification:
 attributes, complements, adjuncts

Level 1 general conceptual shifts dynamic lexicon
 applying across types of meanings
 (such as „artefact“, „institution“, „profession“, „attribute“, „property“)

Level 2 enriching the concept for the referent of an NP by adding extralinguistic information pragmatic enrichment
3. Uses of definites

- **Congruent definite determination: individual and functional CNPs**

 If the CNP is [+U], definite determination is semantically redundant.

- CNP = lexically [+U] individual and functional nouns
 (cf. the pope and mother examples)

- CNP = lexically [–U] sortal or relational noun plus
 a modifier that turns a [–U] concept into a [+U] concept, such as
 - *only* (adnominal)
 - superlatives, *last, next, favourite* (Partee & Borschev), ordinals
 - [+U] appositions, *number 2, word ‘kinezumi’, rumour that …*
 - autophoric DDs: SC with “establishing clause”

 level 0 shifts
 - artefacts-in-exclusive-use-possessives *my / the toothbrush*
Incongruent definite determination: sortal and relational CNPs
If the CNP is [–U], definite determination is functional; it inevitably involves a type shift [–U] → [+U] (or: <e,t> → e).

- **deictic use:** The deictic gesture maps the sort described by the [–U] CNP to an individual of the sort. Note that “what S points to” is a functional concept (here enriched with sortal information on the value)

- **anaphoric use:** The sentential and wider context of the antecedent plus the sentential context of the anaphoric definite NP yields an individual concept for the referent.

(8) *Reinhold met a yeti. He took a picture of the snowman.*

individual concept: “x such that:
Reinhold met x; x is a yeti; (= antecedent sent. context)
x is a snowman, x is visible” (= anaphor sent. cotext)
Functional concepts and definiteness (1)

- The [U] value of a functional N/CNP is the minimum of the [U] values of the possessum concept and the possessor concept:

\[(9) \begin{align*}
\text{a. } & \text{[[the father]+U of [the girl]+U]+U} \\
\text{b. } & \text{[[the father]+U of [a girl]_U]_U} \\
\text{c. } & \text{[[a sister]_U of [the girl]+U]_U} \\
\text{d. } & \text{[[a sister]_U of [a girl]+U]_U}
\end{align*}\)

- If the possessum CNP is a functional concept (FC), it inherits its [U] value from the possessor concept.

- **Referential transparency of FCs**: If the possessum CNP is an FC, it inherits the total determination from the possessor concept, i.e. being (in)definite, possessive, deictic, anaphoric, quantifying, generic etc.
Functional concepts and definiteness (1)

- Definite or indefinite determination applies only to the immediate operand, not necessarily to the whole NP!
 (> mismatch of constituent structure and semantic composition)

(10) a. Reinhold claims he saw [the footsteps]$_{+U}$ of [a yeti]$_{-U}$ in the snow.
 \approx Reinhold saw [yeti footsteps]$_{-U}$ in the snow.
 \neq Reinhold saw [the yeti footsteps]$_{+U}$ in the snow.

b. Reinhold claims he saw [the footsteps]$_{+U}$ of [the yeti]$_{+U}$ in the snow.
 $=$ Reinhold saw [the yeti’s footsteps]$_{+U}$ in the snow.

c. Reinhold claims he saw [footsteps]$_{-U}$ of [a yeti]$_{-U}$ in the snow.
 \approx Reinhold saw [yeti footsteps]$_{-U}$ in the snow.

d. Reinhold claims he saw [footsteps]$_{-U}$ of [the yeti]$_{+U}$ in the snow.
1. Observations
2. Concept types
3. Uses
4. The scale
5. Splits

Functional concepts and definiteness (2)

- A functional CNP in absolute use (i.e. with no explicit possessor specification) with definite determination has an implicit [+U] possessor.

 (11) special case: **definite associative anaphor** (DAA):

 definite [+U][+R] CNP with implicit anaphoric possessor argument

 a. “How much is this?” – “The price$_{+U}$ [= of this$_{+U}$] is attached on the back.”

 b. I’ve bought a car, but something’s wrong with the clutch$_{+U}$ [of the car$_{+U}$].

- A functional CNPs in absolute use with indefinite determination has a [–U] possessor (or else is shifted lexically to [–U])

 (12) a. A father [of a student] came to my office hours the other day.

 b. A father [of the student] came to my office hours the other day.

- With functional CNPs in absolute use, explicit definite determination is **pragmatically not redundant**, as it entails that the possessor argument is [+U].
Evidence

- Incongruent uses of definite and indefinite determination are less frequent than congruent uses.

<table>
<thead>
<tr>
<th>Concept Type</th>
<th>[–U]</th>
<th>[+U]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sortal</td>
<td>zero</td>
<td></td>
</tr>
<tr>
<td>relational</td>
<td>zero</td>
<td></td>
</tr>
<tr>
<td>individual (lex.)</td>
<td>zero</td>
<td>indef</td>
</tr>
<tr>
<td>indiv. (p.n., p.p.)</td>
<td>indef</td>
<td>def</td>
</tr>
</tbody>
</table>

Evidence

- **Incongruent determination requires more processing time.**
 (work in progress)

- **Incongruent determination receives more salient marking:**
 - Incongruent uses are marked, while congruent uses are not
 - Congruent uses receive reduced marking as opposed to incongruent uses.
 - Definiteness splits:
 > Existence of definiteness marking entails marking of pragmatic definiteness.
 > Certain types of semantically defines NPs are left unmarked
4. The scale of uniqueness / definiteness

- deictic definites < anaphoric definites, SC with establishing rel. cl.
- pragmatic definites (PD) < semantic definites (SD)
- PD ≤ definite associative anaphors (DAA) ≤ SD
- semantic definites:

 DAA
 < lexical IC, complex IC (SC with superlative, ordinal etc.)
 < proper names
 < 3rd person pronouns
 < 2nd, 1st person pronouns
4. The scale of uniqueness / definiteness

Types of definite NPs

deictic anaph. autoph. DAA IC proper n. 3rd 2nd,1st

pragmatic definiteness semantic definiteness

Grammatical distinctions

general nouns

adnominal demonstratives

names

3rd 2nd,1st

pronouns
5. Definiteness splits

5.1 Adnominal demonstratives (Dem)

- The standard uses of AD – deictic and anaphoric – require a [–U] CNP for enabling the deictic choice.

- Demonstrative determination results in a [+U] NP:
 Dem Det: [–U] → [+U]

 Demonstrative determination inevitably involves a level-2 type shift, i.e. reference draws on extralinguistic information.

- Historically, anaphoric demonstratives emerge from deictic demonstratives.

- Some languages have separate anaphoric determiners (e.g. Lakhota, Hausa. Lyons 1999: 53ff).

- Application of Dem coincides with pragmatic definiteness.
Split type A: no definiteness marking
(Japanese, Chinese, Russian, Latin, …)

<table>
<thead>
<tr>
<th>deictic</th>
<th>anaph.</th>
<th>autoph.</th>
<th>DAA</th>
<th>IC</th>
<th>proper n.</th>
<th>3rd</th>
<th>2nd, 1st</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>demonstratives</th>
<th>zero definites</th>
</tr>
</thead>
</table>

(13) Japanese

a. *sono hon wa nani?* demmed book top what
 ‘what’s about this book?’

b. *kinō katta (*sono) hon wa tsumaranai* autophoric
 yesterday bought demmed book top boring
 ‘the book I bought yesterday is boring’

c. *kinō hon o katta. (*sono) taitoru wa oboe-nai* DAA
 DEMMED title top remember-NEG
 ‘I bought a book yesterday. I don’t remember the title’
Split type B: demonstratives extended to semantic definites

<table>
<thead>
<tr>
<th>deictic</th>
<th>anaph.</th>
<th>autoph.</th>
<th>DAA</th>
<th>IC</th>
<th>proper n.</th>
<th>3rd</th>
<th>2nd, 1st</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>demonstratives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

West Slavic: Upper Sorbian [Breu 2004], Polish Upper Silesian [Czardybon 2010]

(14) a.
Split type C: definite article different from demonstratives
(English, standard German)

Split type D: proper names included
Modern Greek
Split type E: demonstratives, def. article, personal article

Maori: definite article *te* (sg., generic), *ngaa* (plural)
a (with local noun subjects, proper name and personal pronoun direct objects) [Bauer 1993]
Split type F: demonstratives, strong def, weak def, zero

Standard Swedish: weak def = def. suffix –en/-et, strong def = determiner + def. suffix
[Stroh-Wollin 2003]
Standard Dutch: weak de / het, strong die / dat [Ortmann, to appear]
Split type G: demonstratives, strong def, weak def (including proper names), zero

<table>
<thead>
<tr>
<th>deictic</th>
<th>anaph.</th>
<th>autoph.</th>
<th>DAA</th>
<th>IC</th>
<th>proper n.</th>
<th>3rd</th>
<th>2nd, 1st</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard German: weak def = contraction of preposition and article, [Schwarz 2009]
German dialects: weak def = weak article, or contraction, [Studler 2004]
North Frisian: weak “a-article”, strong “d-article” (Fering) [Ebert 1971]
Split type G: demonstratives, strong def, weak def, preproprial article

Swedish dialects: reduced 3rd person pronouns *a / n* with proper names as “preproprial” articles, [Dahl 2007]

